Skill: 2 times table

Year: 2

Encourage daily counting in multiples both forwards and backwards. This can be supported using a
 number line or a hundred square.

Look for patterns in the two times table, using concrete manipulatives to support. Notice how all the numbers are even and there is a pattern in the ones.

Use different models to develop fluency.

Skill: 10 times table

-00000000000000000000-

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	(0)

Year: 2
Encourage daily counting in multiples both forwards and backwards. This can be supported using a number line or a hundred square.

Look for patterns in the ten times table, using concrete manipulatives to support. Notice the pattern in the digitsthe ones are always 0 , and the tens increase by 1 ten each time.

Skill: Solve 1-step problems using multiplication

One bag holds 5 apples. How many apples do 4 bags hold?

00000

00000
00000

$$
\begin{gathered}
5+5+5+5=20 \\
4 \times 5=20 \\
5 \times 4=20
\end{gathered}
$$

Year: 1/2

Children represent multiplication as repeated addition in many different ways.

In Year 1, children use concrete and pictorial representations to solve problems. They are not expected to record multiplication formally.

In Year 2, children are introduced to the multiplication symbol.

Skill: Divide 2-digits by 1-digit (sharing with exchange)						Year: 3/4
		52				When dividing numbers involving an exchange, children can use Base 10 and place value counters to exchange one ten for ten ones. Children should start with the equipment outside the place value grid before sharing the tens and ones equally between the rows. Flexible partitioning in a part-whole model supports this method.
Tens						
пппmm	-0.					
m.mmm	-0*	?	?	?		
\square	-8.					
${ }^{\text {mmmm }}$	- 0					
		$52 \div 4=13$	$\begin{array}{r} 00001 \\ 010000 \\ \hline \end{array}$			
		Toms				
		(-)				
		(2)				
		\bigcirc				

